Time Series Analysis for Electricity Demand Forecasting: A Comparative Study of ARIMA and Exponential Smoothing Models in Indonesia

Time Series Analysis for Electricity Demand Forecasting: A Comparative Study of ARIMA and Exponential Smoothing Models in Indonesia

Authors

  • Rizky Ilman Nugraha Sistem Informasi, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur Surabaya, Indonesia
  • Agussalim Teknologi Informasi Fakultas ilmu Komputer UPN "Veteran" Jawa Timur

Keywords:

time series, ARIMA, Exponential Smoothing, electricity

Abstract

The increasing global demand for electricity, driven by rapid urbanization and industrialization, necessitates accurate forecasting models to ensure efficient energy management. This study investigates electricity consumption patterns in Indonesia from 1970 to 2022 and evaluates time series forecasting methods for predicting future demand. The models employed include AutoRegressive Integrated Moving Average (ARIMA) and Exponential Smoothing, both of which are commonly used for short-term and long-term forecasts. The dataset was collected from Indonesia's national energy statistics, and preprocessing steps were applied to ensure data quality and consistency. Model performance was assessed using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). While ARIMA captured short-term trends, Exponential Smoothing demonstrated better long-term forecasting accuracy. The results highlight the effectiveness of these models in identifying electricity consumption trends and provide insights for policymakers and energy providers in optimizing energy distribution and production. Future work may incorporate advanced machine learning models and additional external factors for improved forecasting precision.

Downloads

Download data is not yet available.

References

Asynari, E., Wahyudi, D., & Aeni, Q. (2020). ANALISIS PERAMALAN PERMINTAAN PADA GEPREK BENSU

MENGGUNAKAN METODE TIME SERIES. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), Vol. VI No. 3, 215 –220.J. Clerk

Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73. [2] Ngestisari, W. (Desember 2020). Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk Peramalan Harga Beras. Indonesian Journal of Data and Science, Vol 1, No 3.

ISNARWATY, D. P. (2017). PERAMALAN KONSUMSI LISTRIK BERDASARKAN PEMAKAIAN KWH UNTUK KATEGORI

INDUSTRI I-4 DI PT. PLN (PERSERO) DISTRIBUSI JAWA TIMUR MENGGUNAKAN ARIMA BOX-JENKINS.

Syahputri, S. (September 2021). Prediksi Kebutuhan Energi Listrik Pada PT. PLN (Persero) Rayon Aek Nabara Dengan Metode

Exponential Smoothing. JOURNAL OF INFORMATICS, ELECTRICAL AND ELECTRONICS ENGINEERING, Vol 1, No 1, 1-

Septiyanor, H. (Juli,2021). Perancangan Aplikasi Peramalan untuk Metode Exponential Smoothing Menggunakan Aplikasi Lazarus (StudiKasus: Data Konsumsi Listrik Kota Samarinda). ESTIMASI: Journal of Statistics and Its Application, Vol. 2,No. 2, 57-70.

Kusumawati, A. N., & Ghofur, M. (November 2021). Peramalan Permintaan MenggunakanTime Series Forecasting Model Untuk

Merancang Resources Yang Dibutuhkan IKM Percetakan. Jurnal Terapan Teknik Industri, Volume2, Nomor 2, 105-115.

Annasiyah, F., & Prastuti, M. (2023). Peramalan Konsumsi Energi Listrik untuk Sektor Industri di PT PLN (Persero) Area Gresik

Menggunakan Metode Time Series Regression dan ARIMA. JURNAL SAINS DAN SENI ITS, Vol. 12, No. 1.

Zulkarnaini, & Riandi, H. (Juli 2020). ANALISA PERAMALAN BEBAN LISTRIK DI RSUP. DR. M. DJAMIL PADANG SAMPAI

TAHUN 2029. MENARA Ilmu, Vol. XIV No.01. https://doi.org/10.31869/mi.v14i1.1956

Anbar, L. A. (April 2022). Peramalan permintaan tas laptop menggunakan model time series. Journal Industrical Servicess, Vol.7,

No.2. DOI: http://dx.doi.org/10.36055/jiss.v7i2.14326

Faisal, F., & Rizal, J. (.1 Januari 2008). Penerapan Model Analisis Time Series Dalam Peramalan Pemakaian Kwh Listrik Untuk n-Bulan

Ke depan Yang Optimal Di Kota Bengkulu. Jurnal Gradien, Vol.4 No.1, 323-327.

PERAMALAN TINGKAT PENGANGGURAN DI INDONESIA MENGGUNAKAN METODE TIME SERIES DENGAN MODEL

ARIMA DAN HOLT-WINTERS. (2021). Jurnal Ilmiah Informatika Komputer, Vol 26, No 1. http://dx.doi.org/10.35760/ik.2021.v26i1.3512

Wirdyacahya, B. S. (2022). Peramalan Permintaan Semen di PT. XYZ Menggunakan Time Series Regression dan ARIMA. JURNAL SAINS

DAN SENI ITS, Vol. 11, No. 1, 2337-3520. 10.12962/j23373520.v11i1.63222

Downloads

Published

07-12-2024

How to Cite

Ilman Nugraha, R., & Agussalim. (2024). Time Series Analysis for Electricity Demand Forecasting: A Comparative Study of ARIMA and Exponential Smoothing Models in Indonesia . Information Technology International Journal, 2(2). Retrieved from http://itijournal.org/index.php/ITIJ/article/view/23
Loading...