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 The apple farming industry faces challenges in managing apple leaf 

diseases. Current manual detection methods have limitations in expertise 

variability, time required, potential delays in identification leading to 

disease spread, and difficulty distinguishing diseases with similar visual 

symptoms. This research aims to develop an accurate, efficient, and 

automated apple leaf disease classification system using a hybrid 

approach that combines EfficientNet V2 architecture and Vision 

Transformer. The main objectives are to improve disease detection 

accuracy, reduce computational requirements, facilitate more effective 

plant management, and support modern agricultural practices in the apple 

industry. This research uses a hybrid deep learning model that integrates 

EfficientNet V2 and Vision Transformer components. Experiments were 

conducted on an apple leaf disease dataset to evaluate model 

performance. Results show the effectiveness of this method in classifying 

apple leaf diseases, achieving 98.56% accuracy and an F1 score of 0.9856 

on test data. The proposed model has 15.6 million parameters, lighter than 

the original EfficientNetV2S model with 20 million parameters. Training 

time was reduced to 6 minutes 32 seconds compared to the original 

EfficientNetV2S model that required 8 minutes 41 seconds for 5 epochs 

on the same dataset.  
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1. Introduction 

The apple farming industry plays a crucial role in Indonesia's economic growth. Apples not only 
contribute to food security but also serve as a source of income for fruit farmers in Indonesia. 
However, the industry's productivity has declined significantly. According to recent data from the 
Indonesian Statistics Agency (BPS), apple farming productivity in Indonesia decreased from 523,596 
in 2022 to 392,563 in 2023 [1]. BBPP Ketindan informed that one factor that cause a decline in apple 
production is diseases that attack apple trees [2]. Apple leaf diseases can reduce apple plant health, 
which can impact apple fruit production. Early detection and accurate diagnosis of apple leaf diseases 
are essential components of effective plant management [3,4]. Traditional methods relying on visual 
inspection by plant pathology experts have several limitations, such as high labor intensity, potential 
detection delays, limited coverage, and high costs. The complexity of diagnosing apple leaf diseases 
can be exacerbated by factors such as symptom variations and similarities between diseases [5,6]. 

Advancements in computer vision and machine learning have opened new opportunities to address 
these challenges. Deep learning techniques, particularly Convolutional Neural Networks (CNNs), 
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have shown promising results in classifying infected leaf images. Previous research using VGG 16 
architecture achieved high accuracy [7]. However, implementing this model in the field still faces 
challenges in classification accuracy and computational efficiency. Other study implemented 
ResNet-50 for apple leaf disease classification, they achieved 91% accuracy but this research still 
faced challenges computation and training speed [8]. EfficientNet was introduced by Tan and Le in 
2019, represents a breakthrough in efficient CNN architecture design that uses compound scaling 
techniques to systematically balance network depth, width, and resolution [9]. EfficientNet V2, 
proposed by the same authors, further improves efficiency and accuracy through architecture 
optimization [10]. Dosovitskiy et al. introduced Vision Transformer (ViT), adapting the successful 
Transformer architecture from natural language processing to the computer vision domain. ViT 
shows competitive performance with state-of-the-art CNNs on large-scale image classification tasks, 
with advantages in capturing long-range dependencies in images [11]. 

Deep learning architectures for classification have advanced rapidly. EfficientNet V2 enhances 
efficiency, and Vision Transformer can capture complex dependencies [12]. A hybrid of EfficientNet 
V2 and Transformer combines their strengths. This study explores its potential aiming to improve 
the model for practical use. 

2. Method  

2.1. Data Collection 

The data for this study was sourced from Kaggle.com, a platform offering various datasets in formats 
such as image, CSV, JSON, and SQLite. The dataset used includes 7,200 images of apple leaf 
diseases, categorized into four labels Apple Scab, Cedar Apple Rust, Black Rot, and Healthy. 

2.2. Data Preproccessing 

Before the dataset is used, it is preprocessed to match the model's expected input format. Data 
augmentation techniques, such as resizing, random rotation, affine transformation, horizontal flips, 
and color jitter, are applied to create varied images [13]. 

2.2. 1 Resize 

The chosen image input size is 224 x 224 pixels to balance computational efficiency and image detail 
clarity. Because larger sizes would increase computation, while smaller sizes might lose important 
details. This size is also widely used in computer vision research. In PyTorch, the `resize` function 
typically uses bilinear interpolation, which estimates unknown values based on the four nearest 
known points [14]. Matematically it’s formulated as follow. 

P = (1 - t_y)[(1 - t_x)Q11 + t_x Q21] + t_y[(1 - t_x)Q12 + t_x Q22]   (3.1) 

Where P is the value to be estimated at point (x, y). Q11, Q12, Q21, Q22 are known values at the 
four corner points of the rectangle enclosing point (x, y). (x1, y1) is the coordinate of the bottom-left 
corner point of the rectangle. (x2, y2) is the coordinate of the top-right corner point of the rectangle. 
t_x is the relative distance between x and x1 on the x-axis, calculated as t_x = (x - x1) / (x2 - x1). t_y 
is the relative distance between y and y1 on the y-axis, calculated as t_y = (y - y1) / (y2 - y1) 

2.1. 2 Random Rotation 

Objects input to the model in real world scenarios may be tilted or rotated at various angles. To 
address this, random rotation up to 20 degrees is applied to train the model to recognize objects 
regardless of orientation. Mathematically, rotation can be expressed as follows. 

x' = cos(theta) * (x - center_x) - sin(theta) * (y - center_y) + center_x (3.2) y' = sin(theta) * (x - 
center_x) + cos(theta) * (y - center_y) + center_y     (3.2) 

Where (x, y) are the original pixel coordinates in the image, (x', y') are the pixel coordinates after 
rotation and translation, theta is the random rotation angle chosen from a specified range (in radians) 
center_x, center_y are the normalized rotation center coordinates between 0 and 1 

2.1. 3 Random Affine 

In real world use, input images may be zoomed in or out. To handle this, random affine 
transformation is applied that consist of random rotations, translations, and scaling. Mathematically, 
the random affine operation can be expressed as follows. 
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x' = a * x + b * y + c         (3.3) 

y' = d * x + e * y + f          (3.4) 

Where (x, y) are the original pixel coordinates (x', y') are the pixel coordinates after transformation, 
a and e are scaling and rotation parameters on x and y axes, b and d are shearing parameters on x and 
y axes, c and f are translation parameters on x and y axes. 

2.1. 4 Random Horizontal Flip 

To further reduce the model's reliance on image orientation, random horizontal flip augmentation is 
applied. Mathematically, the random horizontal flip operation can be expressed as follows. 

x' = width - x – 1         (3.5) 

y' = y           (3.6) 

Where (x, y) are the original pixel coordinates, (x', y') are the pixel coordinates after horizontal 
flipping width is the image width, y remains unchanged as the processing is horizontal 

2.1. 4 Random Color Jitter 

In real world use, input image lighting can vary greatly depending on whether photos are taken in 
the morning or evening. To address this, color jitter augmentation was applied to randomly adjust 
image contrast and brightness by 20% to trains the model to recognize objects despite minor color 
or lighting changes. Mathematically, the color jitter operation can be expressed as: 

((𝑜𝑙𝑑_𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑛) ∗ 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡_𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑚𝑒𝑎𝑛) ∗ 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟 + (1 − 

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟) ∗ 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 + 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠_𝑓𝑎𝑐𝑡𝑜�    (3.7) 

Where old_value represents the original value of a color channel (red, green, or blue) in a pixel, mean 
is the average value of all pixels in that color channel. Grayscale is the grayscale value of the pixel, 
calculated as the average of the three color channels (R, G, B). Brightness_factor, contrast_factor, 
and saturation_factor are randomly selected adjustment factors within a specified range. new_valu is 
the transformed value of the color channel after applying the adjustments. 

2.2. Model Creation 

Table 1. Model Architecture 

No Layer Channel/Dim Stride Total 

1 Conv 3x3 24 2 1 

2 Fused MBConv 3x3, 

e = 1 

32 1 1 

3 MBConv 16x16 Patch Embedding, 

e = 1 

192 8 1 

4 Transformer Encoder, e = 2 192 - 3 

5 MBConv 3x3, e = 2 192 1 6 

6 MBConv 5x5 Patch Embedding, e = 1 384 2 1 

7 Transformer Encoder, e = 2 384 - 6 

8 MBConv 3x3, e = 2 384 1 6 

9 MBConv 3x3 Patch Embedding, e = 1 768 1 1 

10 Transformer Encoder , e = 2 768 - 2 

11 Adaptive Average Pooling 768 - 1 

12 Linear 768 - 1 

e = expansion ration of the channel expansion 

In the EfficientNetV2 paper, it is explained that depthwise convolution operates slowly when 
implemented in early layers but becomes effective when applied in middle and final layers. 
Therefore, the initial layers, as in the original EfficientNetV2 model, use a standard 3x3 convolution 
and FusedMBConv. The first layer employs a stride of 2 to halve the input's spatial dimensions, 
improving computational efficiency. The Fused MBConv and MBConv blocks remain identical to 
those in the original model. 
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Fig. 1. Fused MBConv And MBConv 

The SE in figure 1 is Squeeze Exitation that is a channel attention mechanism which in mathematical 
can be described as below. 

SE = Sigmoid(Conv2(SiLU(Conv1(Avg_Pool(x)))))     (3.8) 

Where sigmoid represents sigmoid activation, conv is 1x1 convolution, silu is silu activation, and 
avg_pool is average pooling. MBConv is also used to create overlapping input patches for the 
Transformer Encoder, and repatch to change the patch size while doubling the channel. The 
modifications include adding Transformer Encoders to the architecture to capture global 
relationships, the Transformer Encoder can be explained as below. 

 

Fig. 2. Transformer Encoder 
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The encoder consists of three components, RMS Norm for input normalization, Multi Head Self 
Attention for extracting global features, and a Feed Forward Network that processes the extracted 
features into a higher-dimensional space. RMS Norm is used instead of Layer Norm because, as 
explained in the RMS Norm paper, the beneficial effect of Layer Norm comes from its rescaling 
rather than its recentering. In RMS Norm, this recentering is eliminated, providing the same effect 
with lighter computation since it doesn't need to calculate the mean. The RMS Norm is as follows. 

𝑎𝑖            =
𝑎𝑖

𝑅𝑀𝑆(𝑎)
𝑔𝑖

         (3.9) 

𝑅𝑀𝑆(𝑎) = √1

𝑛
∑ 𝑎𝑖

2𝑛

𝑖=1

         (3.10) 

Where a represents input vector and ai represents each input element in the vector, and gi is a 
learnable parameter. 

 

Fig. 3. Multihead Self Attention 

In the Multi-Head Self-Attention, three linear projections are applied to the input, resulting in 
matrices Q (query), K (key), and V (value) [8]. This is done using either a linear layer or a 1x1 
convolution with zero padding. In this study, a 1x1 convolution is used to combine the advantages 
of convolution and the self-attention mechanism. Here RMS Norm is also used to normalize key and 
value because in the experiment it prevents gradient exploding in the modified model. Each Q, K, 
and V is divided into multiple groups, referred to as heads, with the number of heads equal to the 
total number of groups. Each head has a dimension of (initial dimension) / (number of heads). The 
Multi Head Self Attention used is not the standard version, but a variation called Grouped Query 
Attention. The only difference is several query groups share the same key and value to reduce 
computational cost. 

 

Fig. 4. Traditional MHSA, GPQA Variance, MQA Variance 
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The image above illustrates three variations of Multi Head Self Attention. On the left, each query, 
key, and value has its own distinct values. In the middle, a group of queries shares the same key and 
value, where one group can consist of two or more queries. On the right, all queries use the same key 
and value. The middle variation is chosen to balance computational efficiency and accuracy. Each 
group consists of two queries. Then, attention is calculated for each head using the following 
mathematical formula. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ( 
𝑄 @ 𝐾𝑇

√ℎ_𝑑𝑖𝑚
 ) @ 𝑉

      (3.11) 

Where Q is the query matrix, K is the transpose of the key matrix, V is the value matrix, h_dim is 
the dimension of the head, @ represents matrix multiplication, and softmax is a function that converts 
values into a range between 0 and 1, defined by the following formula: 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥𝑖) =
exp(𝑥𝑖)

∑ exp (𝑥𝑗)𝑗

        (3.12) 

Where exp denotes the exponential function, xi is the input, and ∑_j exp(x_j) represents the sum of 
all exponential results for each x in the same row. 

In the feed forward network, 1x1 convolutions are also used instead of linear layers as in the original 
Transformer architecture. Furthermore, SiLU activation is employed instead of GELU because, in 
the experiment SiLU yielded higher accuracy. The input to SiLU is first scaled by multiplying it with 
a learnable parameter, this scaling resulted in more stable accuracy improvements across epochs in 
the training in the experiment. 

In the original Vision Transformer, classification is performed using a class token. The class token 
is a special token added to the embedding of image patches and represents the overall information of 
all tokens. It acts as a kind of representative for all tokens. In the Vision Transformer paper, it is also 
explained that classification can be done by averaging all tokens. This architecture does not use a 
class token but instead employs a different approach by applying global average pooling to all tokens 
using the `nn.AdaptiveAvgPool1d` function, which averages the values of all tokens. This approach 
has the advantage of utilizing all available tokens. 

 

Fig. 5. Feed Forward 

2.3. Model Training 

In the model training phase, both the modified model and the original model trained using 
CrossEntropyLoss to measure discrepancies between predicted and actual label distributions. The 
AdamW optimizer is employed with a 0.0005 learning rate and L2 regularization to prevent 
overfitting, while StepLR scheduling reduces the learning rate every 3 epochs by 0.97. Training runs 
for 5 epochs on an Nvidia T4 16GB GPU via Google Colab. 
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2.4. Model Testing 

The evaluation will be performed using accuracy metrics, F1 Score, ROC AUC, Cohen's Kappa, and 
balanced accuracy using the Scikit Learn library. The data used for evaluation consists of about 250 
images for each label. Then, the evaluation results will be compared. 

To use all that evaluations, first using 4 metrics, True Positives (TP) for class I that is the number of 
samples actually belonging to class i and predicted to belong to class i by the model, False Positives 
(FP) for class I that is the number of samples not actually belonging to class i but predicted to belong 
to class i by the model, True Negatives (TN) for class I that is the number of samples not actually 
belonging to class i and predicted not to belong to class i by the model, False Negatives (FN) for 
class I that is the number of samples that actually Accuracy measures the proportion of correct 
predictions out of total predictions.This metric is the simplest. Mathematically, accuracy is calculated 
with the formula 

Accuracy = (Σi = 1 to n_classes TP_i) / (Total number of samples)   (3.13) 

Where n_classes is the number of classes, TP_i is True Positives for class i. 

F1 Score combines precision and recall into one metric. A high F1-score indicates a good balance 
between precision and recall. Precision measures how accurate the model is in predicting certain 
classes, calculated by TP_i / (TP_i + FP_i), and recall measures how well the model finds all samples 
that actually belong to certain classes, calculated by TP_i / (TP_i + FN_i). Thus mathematically, F1 
score is formulated as follows 

F1_score_i = 2 * (Precision_i * Recall_i) / (Precision_i + Recall_i)   (3.14) 

Cohen's Kappa measures the level of agreement between model predictions and actual labels, 
considering the possibility of agreement occurring by chance. A high Kappa indicates that the 
agreement between predictions and actual labels is not coincidental. Cohen's Kappa is 
mathematically formulated as 

κ = (po - pe) / (1 - pe)         (3.15) 

Where po is the proportion of observed agreement between predictions and actual labels, pe is the 
proportion of agreement expected by chance. 

Log Loss measures how well the probabilities predicted by the model match the actual labels. The 
lower the log loss, the better the model's probability calibration. The log loss formula is like below 

Log Loss = -1/N * Σi = 1 to N Σj = 1 to M yij log(pij)     (3.16) 

Where N is the number of samples, M is the number of classes, yij is 1 if sample i belongs to class j, 
0 if not, pij is the model's predicted probability that sample i belongs to class j. 

Balanced Accuracy measures model accuracy while considering class imbalance. This is to validate 
that the model remains good if some classes have more samples than others. The balanced accuracy 
formula is like below 

Balanced Accuracy = 1/nclasses * Σi = 1 to nclasses TP_i / (TP_i + FN_i)  (3.17) 

Where n_classes is the number of classes, TP_i is true positives for class i, FN_i is false negatives 
for class i. 

2.5. Model Deployment 

In the deployment phase, the EfficientNetV2S model is hosted on a website's backend server using 
Flask to handle computational demands, rather than running on user devices. The frontend is built 
with SvelteKit for a responsive interface. This architecture ensures efficient performance by 
processing model inference on the server, preventing memory constraints on user devices and 
enabling smooth operation regardless of device capabilities. 

    

Fig. 6. Image of Apple Scab, Cedar Apple Rust, Black Root, Healthy 
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3. Results and Discussion 

3.1. Data Collection Results 

The result of data collection obtained from the website kaggle.com is 7,200 images of apple leaf 
diseases. In these images, there are 4 classes: Apple Scab, Cedar Apple Rust, Black Rot, and Healthy. 

3.2. Data Preproccessing 

Preprocessing applied involves resizing images and performing data augmentation. The 
augmentation includes random rotation, random affine, random horizontal flip, and random color 
jitter. Data augmentation results in appearances different from the original data. The results include 
the following. 

          

Fig. 7. Random Rotation, Random Affine, Random Horizontal Flip, Color Jitter 

3.3. Model Creation Result 

The resulting model is a hybrid EfficientNetV2S-Vision Transformer architecture. The trained model 
for this research dataset can be downloaded at 
https://drive.google.com/file/d/1qR0pjnlzaV7uXf81TJCYxKYLOEh2Z8B/view?usp=sharing. 
Additionally, the model architecture has been packaged into a library for easy application to other 
datasets, available at https://github.com/fuji184/fuji_model.  

3.4. Model Training Result 

  

Fig. 8. Training of the modified model and the original model 

Both the modified and original models achieved comparable final validation accuracies on validation 
data, approximately 0.98. However, the modified model demonstrated reduction in training time, 
completing training in 6 minutes 32 seconds compared to the original model's 8 minutes 41 seconds. 
This faster training time suggests improved training efficiency, which can be particularly beneficial 
in scenarios with limited computational resources. 

  

Fig. 9. Training graph of the modified model (left) and training graph of the original model 
(right) 

Both models exhibit a similar trend in accuracy improvement and a similar decline in loss, with both 
showing stable performance, indicating that the modified model performs comparably to the original 
model on the validation data. 

https://drive.google.com/file/d/1qR0pjnlzaV7uXf81TJCYxKYLOEh2Z8B/view?usp=sharing
https://github.com/fuji184/fuji_model
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3.5. Model Evaluation Result 

 

Fig. 10. Confussion Matriks 

The confusion matrix above illustrates the performance of the model. The diagonal values represent 
correctly classified samples, with high accuracy observed across all classes. Aapple Scab has 244 
correct predictions with 8 misclassifications, Black Rot has 246 correct predictions with only 3 
errors, Cedar Apple Rust shows 217 correct predictions and 2 misclassifications, and Healthy has 
251 correct predictions with 3 errors. The small number of off diagonal values indicates that the 
model performs well. 

  

Fig. 11. Classification report of the modified model (left) and the original model (right) 

The precision and recall values are consistently high across all categories, indicating that the 
modified model performs well in correctly identifying both positive instances and minimizing false 
positives. Specifically, the highest precision (1.000) is achieved for cedar apple rust, while the lowest 
precision (0.9580) is observed for the healthy class. The overall accuracy of the model is 98.56%, 
with a macro average F1-score of 98.56% and a weighted average F1-score of 98.56%, reflecting 
balanced and reliable performance across all classes. The overal performance of the modified model 
and the original model are very similar, 98.56% and 98.66%. 

 

Fig. 12. Additional report 

The figure 12 summarizes additional evaluation metrics for the model's performance. The ROC AUC 
score is 1.000, indicating perfect discrimination between classes. Cohen's Kappa is 0.981, suggesting 
a very high level of agreement between the model's predictions and the true labels. The Log Loss is 
0.051, showing that the model's probabilistic predictions are highly confident and accurate. Lastly, 
the Balanced Accuracy is 0.986, reflecting the model’s consistent performance across all classes, 
even in the presence of potential class imbalance. These metrics further confirm the robustness and 
reliability of the model. 



10 Information Technology International Journal            Online-ISSN 3025-3125 

Vol. 3, No. 1, May 2025, pp. 01-10 

Sri Fuji Santoso (Hybrid EfficientNet V2 - Vision Transformer ….) 

  

Fig. 13. The modified model (left) and the original model (right) 

A further comparison of the modified architecture and the original architecture is that modified model 
has 15,681,440 parameters and a 60.39 MB memory footprint, outperforms original architecture, 
which has 20,102,612 parameters and uses 77.56 MB of memory. The modified model also more 
CPU efficient (57.0%) than the original model (70.0%). While both models exhibit GPU efficientcy, 
overall, the modified model is more efficient than the orriginal model, makes it a good choice for 
resource constrained deployments. 

3.6. Model Deployment Result 

After the model is fully developed and trained, the model is deployed to website to make it easier to 
be used. The main feature of the website is to take input from the user and send it to the model for 
prediction then send the result back to the user. 

 

Fig. 14. Deployment 

The left side is the homepage, which serves as the main navigation area. On the right of it is upload 
page where user can submit their image. The right side is the result page that display the model 
prediction result and treatments. 

4. Conclusion 

Based on the study, modifying the EfficientNetV2-S architecture with an optimized Transformer 
Encoder allows for maintaining 98% accuracy, similar to the original model, while reducing 
parameters and computational costs. The modified model trains faster in 6 minutes and 32 seconds, 
compared to 8 minutes and 41 seconds in the original model. The modified model has fewer 
parameters, 15 million compared to 20 million in the original model. It also requires less RAM for 
inference 60 MB compared to 77 MB in the original model. This demonstrates that CNN and 
Transformer can work together efficiently, to achieve high accuracy with reduced resource 
consumption. 

Declarations  

Author contribution. Creating model architecture that combine EfficientNet V2 and Vision 
Transformer by selection different parts of both model and then designing a new model that consist 
of both parts.  

Data and Software Availability Statements  

The Google Colab repository where the experiment was conducted can be accessed here 
https://colab.research.google.com/drive/1g9o66Y2jcD2a66aquVSN1uRdl1d5HHvG?usp=sharing. 
The data used in the experiment can be accessed here https://drive.google.com/drive/folders/1-
AbGWIkuv8IFpNfQfmNAjP0acaen2zOk?usp=sharing. The model code, packaged as a library, can 
be accessed here https://github.com/fuji-184/fuji_model. The website code can be accessed here 
https://github.com/fuji-184/AppLeDiTion.  
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