Provincial Segmentation Based on District Road Stability in Indonesia: K-Means and Hierarchical Clustering Approach

Authors

  • Heldiansyah Politeknik Negeri Banjarmasin
  • Novi Shintia Politeknik Negeri Banjarmasin
  • Rustaniah Politeknik Negeri Banjarmasin
  • Hadi Gunawan Politeknik Negeri Banjarmasin
  • Muchtar Salim

DOI:

https://doi.org/10.33005/itij.v3i2.55

Keywords:

district road stability, provincial clustering, k-means clustering, hierarchical clustering, infrastructure policy

Abstract

This study segments Indonesian provinces based on district road stability characteristics using K-Means and Hierarchical Clustering approaches. We analyzed district road stability data from 34 provinces during 2016-2023, including total road length, stable road conditions, and unstable road conditions. Data preprocessing included cleaning, normalization using min-max scaling, and feature selection. Results showed optimal clustering with k=4, achieving silhouette coefficient of 0.647 for K-Means and 0.623 for Hierarchical Clustering. Four distinct provincial clusters emerged: Optimal Infrastructure Provinces (>80% stability), Developing Infrastructure Provinces (60-80% stability), Infrastructure Challenge Provinces (<60% stability with extensive networks), and Limited Infrastructure Provinces (small networks with variable stability). The Adjusted Rand Index of 0.78 demonstrated high agreement between methods. This segmentation provides evidence-based insights for targeted infrastructure policy formulation in Indonesia.

Downloads

Download data is not yet available.

References

[1] O. G. Dela Cruz, C. A. Mendoza, and K. D. Lopez, “International Roughness Index as Road Performance Indicator: A Literature Review,” IOP Conf Ser Earth Environ Sci, vol. 822, no. 1, p. 012016, Jul. 2021, doi: 10.1088/1755-1315/822/1/012016.

[2] A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data,” Inf Sci (N Y), vol. 622, pp. 178–210, Apr. 2023, doi: 10.1016/j.ins.2022.11.139.

[3] M. Vichi, C. Cavicchia, and P. J. F. Groenen, “Hierarchical Means Clustering,” J Classif, vol. 39, no. 3, pp. 553–577, Nov. 2022, doi: 10.1007/s00357-022-09419-7.

[4] R. Saha, M. T. Tariq, M. Hadi, and Y. Xiao, “Pattern Recognition Using Clustering Analysis to Support Transportation System Management, Operations, and Modeling,” J Adv Transp, vol. 2019, pp. 1–12, Dec. 2019, doi: 10.1155/2019/1628417.

[5] W. Suo and J. Zhao, “Exploring the Streetscape Perceptions from the Perspective of Salient Landscape Element Combination: An Interpretable Machine Learning Approach for Optimizing Visual Quality of Streetscapes,” Land (Basel), vol. 14, no. 7, p. 1408, Jul. 2025, doi: 10.3390/land14071408.

[6] S. Alam, M. S. Ayub, S. Arora, and M. A. Khan, “An investigation of the imputation techniques for missing values in ordinal data enhancing clustering and classification analysis validity,” Decision Analytics Journal, vol. 9, p. 100341, Dec. 2023, doi: 10.1016/j.dajour.2023.100341.

[7] A. F. AlShammari, “Implementation of Clustering using K-Means in Python,” Int J Comput Appl, vol. 186, no. 40, pp. 12–17, Sep. 2024, doi: 10.5120/ijca2024923990.

[8] E. Umargono, J. E. Suseno, and S. K. Vincensius Gunawan, “K-Means Clustering Optimization Using the Elbow Method and Early Centroid Determination Based on Mean and Median Formula,” in Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019), Paris, France: Atlantis Press, 2020. doi: 10.2991/assehr.k.201010.019.

[9] P. Yildirim and D. Birant, “K-Linkage: A New Agglomerative Approach for Hierarchical Clustering,” Advances in Electrical and Computer Engineering, vol. 17, no. 4, pp. 77–88, 2017, doi: 10.4316/AECE.2017.04010.

[10] F. Batool and C. Hennig, “Clustering with the Average Silhouette Width,” Comput Stat Data Anal, vol. 158, p. 107190, Jun. 2021, doi: 10.1016/j.csda.2021.107190.

[11] F. Ros, R. Riad, and S. Guillaume, “PDBI: A partitioning Davies-Bouldin index for clustering evaluation,” Neurocomputing, vol. 528, pp. 178–199, Apr. 2023, doi: 10.1016/j.neucom.2023.01.043.

[12] J. M. Santos and M. Embrechts, “On the Use of the Adjusted Rand Index as a Metric for Evaluating Supervised Classification,” 2009, pp. 175–184. doi: 10.1007/978-3-642-04277-5_18.

Downloads

Published

17-11-2025

How to Cite

Heldiansyah, Novi Shintia, Rustaniah, Hadi Gunawan, & Muchtar Salim. (2025). Provincial Segmentation Based on District Road Stability in Indonesia: K-Means and Hierarchical Clustering Approach. Information Technology International Journal, 3(2). https://doi.org/10.33005/itij.v3i2.55